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Analytic SU n( )2 × S dual tensorial (DT) spin dynamics over uniform NMR spins is invoked in
examining the modern quantum basis for the universal non-observability rule which gov-
erns dominant intracluster JXX′ couplings of (A)[X]n NMR systems as a specific form of (ab-
stract) permutational spin symmetry (PSS) with well defined properties on spin-alone space.
This is shown to be linked to DT constraints that apply to the cross-product $ ( . )φ±1

1 11 polaris-
ation development i.e., as being confined to [$ ]1n ( )S n (Liouvillian) salient, with the existence
of [ $ ]n (rotating frame) null subspaces. Both these arise within the spin dynamics of (A)[X]2
spin systems (or subsystems thereof) within (a hierarchy of) dominant JXX′ governing the in-
ternal $ ( )L 0 ; such spin systems provide analytic sequels to comparative spin dynamics studies
of XX′ PSS and AX broken-PSS systems in a Liouvillian coupled tensorial basis formalism,
since both draw on (Sanctuary B. C.: Mol. Phys. 1985, 55, 1017), and on the realisation that
proper PSS over a (uniform) spin-space $ [ $ ,.]( ) ( )L H0 0= – zeroth-order Liouvillian and its internal
(hierarchical subsets of) JXX′ (Temme F. P.: J. Mol. Struct. (THEOCHEM) 2002, 547, 153) i.e.,
for abstract S Gn ↓ group embeddings. The present work also examines the general irrep-
structure of DT spin symmetries for the extent of unit-character irreps and the role of
S S Sn n⊃ ⊃ ⊃−1 22.. [ ]( ) group chains in defining the S n multiple invariants under democratic
recoupling of PSS of uniform spin systems. As group measures, these properties apply to
both (A)[X]n and [AX]n PSS symmetries, with the invariant cardinality |SI|(n) being related to
time-reversal invariance (TRI) and its inherent democratic recoupling (DR) over Weyl
(I • I) pairs. For [X]2n uniform spin clusters, |SI|(2n) is best derived via n-fold polyhedral
combinatorics of the underlying DR (Temme F. P.: Proc. R. Soc. London, Ser. A 2005, 461,
321) i.e., as an augmented post-Weyl view of the essential role of TRI in (group) invariant
cardinality, with the S n -invariants represented by certain S n subduction properties.
Keywords: NMR spin dynamics theory; Democratic recoupling; Permutation spin symmetry;
Nuclear magnetic resonance; Time-reversal invariance.
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The NMR literature allows one to distinguish clearly between effects de-
rived from abstract (uniform) spin-space, zeroth-order Liouvillian(s) for the
(initial) NMR evolution process under permutational spin symmetry
(PSS)1–6, as compared to those based on particle (or molecular) quantum
physics-induced parity, or other residual invariance effects7, such as
time-reversal invariance (TRI), T. Even for NMR ensemble spin systems
which only exhibit broken-permutational spin symmetry (B-PSS)7 (or for
the case of a single higher-I spin8–10), the independent parity invariance P
(distinct from PSS) is still of considerable conceptual value. It is especially
important to note here that the PSS spin symmetry of (liquid state, or
nematic state) NMR (i.e., as an automorphic S Gn ↓ spin symmetry1 on an
abstract spin space2) derives exclusively from the zeroth-order
(Hamiltonian or Liouvillian) structure2,6, and is based specifically on the
S S Sn n⊃ ⊃ ⊃−1 22.. [ ]( ) subgroup (subduction) chains of the spin space,
rather than any of the orthogonal chain processes typical of (vibrational, or
electronic) spectroscopic phenomena. The theory of PSS applied to uniform
spin NMR ensembles specifically excludes the latter type of group
subduction – for reasons discussed later.

For analogous isochronous NMR systems associated with broken-
permutational spin symmetry (B-PSS), the residual particle symmetries (e.g.,
parity as derived from the known independence of the CP, CPT
invariances) are important properties7. Both P parity and T TRI properties
of (uniform ensemble) NMR systems naturally contribute to the structure of
any tensorial basis formalism, e.g. those given in refs7–12. Both {|IM.〉 and
{|kqv〉〉 quantal basis formalisms allow one to recognise the parity aspects of
even/odd tensorial rank labelling, whereas (by comparison) the presence of
TRI 13, ‘T’ of CPT above, in NMR arises indirectly. Its quantal effect may be
realised from the pairwise permutational exchange properties of the
(I • I)i(I • I)j(..)k.. Weyl–Corio bracket algebras14. For simple (non-uniform)
spin systems, its linear (Weyl) bracket chain defines the system-defined
independant cardinality of the (multiple) scalar invariants (see the Appen-
dix for more details on questions of the inter-collations of (Weyl T- and
bracket algebra)-defined independent invariant cardinalities and the S n rep-
resentational subgroup chains17,19), and hence the algebraic completeness
of auxilliary labelling associated with certain (Liouvillian) dual projective
mappings. These ancillary label properties (or the equivalent graph
invariants in other types of systems) are explicit labels15 only for Liouville
space superboson mappings15. Because of their derivation, group invariants
constitute (Lie algebra) group measures16 associated with the SU n( )2 × S dual
group maps. By contrast the simple Hilbert space boson mapping
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formalisms (applicable to electronic structure problems), the S n invariants
are simply implicit variables17,18 of the mapping. A fuller appreciation of
the quantum physics underlying NMR evolution, or mixed evolu-
tion/(quadrupolar) relaxation processes requires the use of some (aug-
mented) tensorial form4,8–12 of the quantum-Liouville equation (Eq. (1) be-
low), with the use of some particular initial condition for φq

k v( ) (t = 0) (e.g.
for various types of (higher-I) spin systems), in order to adequately describe
the nature of the NMR spin dynamics8–10 over a sequence of pulses. As
classic area of spin dynamics, these sequences (whether for solid-state23 or
liquid-state NMR applications) arise from detailed ‘time-reversal or phase’ in-
formation which is quite distinct from the TRI properties described below.
For its contextual interest beyond the present application(s), it is noted theo-
ries solid-state spin ensembles represents an extensive field involving 3-space
(graphical) lattice-based spin-interaction networks24.

The tensorial formalisms introduced by Sanctuary, Halstead and their
co-workers9–11 in the mid-1980s express the density operator ρ[t] in terms of
a set of expectation values associated with the full set of tensorial bases10.
Thus the quantum Liouville equation (here including the relaxation term
and given in a suitable ($ ( )φq

k v ) rotating frame with integer k ranks) takes the
dynamical form:

− = −i ih$ { $$ $$ }$(•φ φ 0)L R (1)

with $φ± q
k polarisation being the rotating-frame expectation value

〈 〉T vq
k ( )

rot.frame
derived from

$ {$[ ] ( )},φ ρq
k

q
k kqT t T v k≡ 〈 〉 =

rot.frame
Tr integer (2)

where $[ ]ρ t is the density operator associated with the Schrödinger formal-
ism, and { ( )} {| ( ) }T v kq vkq ≡ 〉〉 represents the complete Liouville space basis
with its full set of integer rank k, projection q, components, together with
various v ancilliary ((DR-based) v invariant, or other recoupling) parame-
ters. Certain additional details of the formalism, including their various
transformational properties, are included in Appendix to help orientate the
reader who is more familiar with {|IM〉 〈 IM′|} product formalism of NMR uti-
lised in treating simple non-uniform or isochronous spin systems20. A fuller
description of interrelationships of product spin formalisms and tensorial
basis formalism may found in a 1986 work due to Sanctuary11b.
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ENSEMBLE NMR SPIN DYNAMICS VIA SU n( )2 × S TENSORIAL SETS: ANALYTIC
VIEW

In terms of the cross-product polarisations φ± ′ ′1
1

1 2( )k k as (notational) NMR
observables, the first analytic description of the initial evolution/develop-
ment stage for the AX spin system11 was given in 1985; an outline of the
notation and methods utilised, and some of the results obtained, have been
summarised for convenience below, and for completeness in Appendix.
These analytic results have been augmented and reformulated in a special-
ised way subsequently to describe the PSS-based identical two-spin sys-
tem12. It is the form of these final analytic structures of XX′ system spin dy-
namics which allows one a fuller understanding of the quantum-based
group theoretic nature of [X]n, or (A)[X]n, PSS spin system (sub)spectra in
general. In turn, this leads to a systematic differentiation of the above sys-
tems from the dynamics of the contrasting B-PSS, or isochronous B-PSS 7,20

NMR systems, in which the intracluster spin coupling is no longer the dom-
inant ensemble interaction determining $ ( )L 0 . In addition, the XX′ analytic
form of ref.12 highlights the importance of the relationships between PSS,
in the form of its Liouvillian properties, and various earlier NMR commuta-
tor properties5,6 of Hilbert space-based realisations of nuclear spin PSS.
Hence a fuller understanding of the origins of a universal long-established
quantum physics property inherent in dominant intracluster interactions
of the (A)[X]n type of uniform spin system6,21 is obtained as it concerns the
non-observability of dominant intracluster JXX′ (homonuclear) coupling(s)
in (A)[X]n PSS spin systems. This is derived here in a modern analytic spin
dynamics formalism, which draws on various aspects of representational
theory and the simpler aspects of (superboson) dual mappings inherent in
quantum-Liouville formalisms.

One final introductory remark is called for here for its pertinent to vari-
ous applications. This concerns the use of Liouville spin space-derived rep-
resentations in specific applications (e.g., PSS symmetry breaking) and the
importance of retaining all the conserved spin particle and PSS symmetry
properties, including S n invariants, for the clarity which they impart to the
final analytic form(s) of NMR observables. The value of such general ap-
proaches has been widely demonstrated in applications given the modern
NMR, and/or NQR, literature, e.g., within the works of Happer8, Krishnan et
al.9, Sanctuary and Halstead10, or more recently Bain22 and others. Such
tensorial formalisms retaining P, T invariance properties then yield an in-
valuable block-factored L representational matrix form, which gives the
simplest possible view of the resultant analytic spin dynamics. These views
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imply that all the conserved invariances, including CP, CPT, are retained as
well as the uniform spin system’s scalar invariants (under PSS) whose cardi-
nality derives from more specific time-reversal considerations14, the subject
of recent work15 on general 2n-fold (uniform) identical spin ensembles.

XX′ = [X]2 IDENTICAL SPIN LIMITS AS A MODEL FOR WIDER PSS NMR SPIN
SYSTEMS [X]n

On comparing and contrasting the NMR spin dynamics for two spins under
the two possible distinct limits, i.e. of being distinct, or strongly coupled
identical resonance frequency spins within the background material given
in ref.11 (and the spin dynamics relationships between tensorial and prod-
uct formalisms, given in Appendix, one is in a position to develop models
for PSS and B-PSS spin symmetries, utilising a common Liouvillian for the
two (and higher n-fold) identical spin model systems which reduce to the
form for AX case of

L h = + + −[ ( ) ( ) ( ), ]i iw T w T J T01
10

02
10 010 01 3 2 11

for the specialised identical resonance frequency two-spin XX′ system case
from the above equation to

L Sh = + −[ ([ ])( ) ( ), ]i 2wT J T10
2

02 3 2 11 (3)

with the Liouvillian component T T Tq q q1 1 12 10 01 2([
~

]) { ( ) ( )}= + and where
w is now the mean resonance frequency. Hence it follows that

[ ([ ]) ( . . ), ]
, :

i nwT n J Tij i j
i j i j

10 03 2 01 1 0+
≤

−∑

is the general form for Liouvillian of all the wider uniform/identical n-fold
strongly intracluster-coupled spin ensemble systems.

XX′ as a Model for More General [X]n, (A[X]n) Spin Systems – from AX

The alternative to the Sanctuary analytic formalism of ref.11, summarised in
Appendix, is the XX′ limit, in which wD eventually vanishes. This provides
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for an additional partial uncoupled problem over the φ φ± ±1
1

1
22 11([ ]), ([ ]), and

φ φ± ±1
1 2

1
11 11([ ]), ([ ]) coupled polarisation subsets12, as expectation values of

specific (spin-alone) tensorial components. This arises once certain row/col-
umn additions/subtraction and related transformations are invoked and
suitable rotating frame transformations adopted. One then finds (for φq

k s
correlated to either primary tensors or unnormalised dual tensors) that

( )

( ) $ ([
~

])[ ]
$ ( [

~
])[ ]

$ ( [
~

])
d dt
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
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

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(4)

Clearly from Eq. (5), $ ([
~

])[ ]φ1
1 2 t becomes a constant of motion once the van-

ishing wD limit is imposed. In consequence, the [
~

]( )2 2S subspace then repre-
sents a null irrep-salient for the PSS-based XX′ uniform identical spin sys-
tem; one pair of φq

k polarisations remains coupled however, as we pointed
out in our earlier discussions on strong intra-coupled PSS systems12. In con-
trast to that work, here we have adopted a wD skew-diagonal representa-
tional form for the coupled matrix, prior to imposing the limit condition.
From Eq. (5), the single quantum eigenfrequencies (labelled by their [

~
]λ sa-

lient and tensorial k rank here as sub/superscripts) become

{ } { } , { } , { } .
[

~
] [

~
] [

~
]

λ i
k k kJ= ±= = =0 0
2

1

2

2

1

1
2 (5)

It is of some further interest to consider certain formal analytic solutions
for [X]2 PSS spin dynamics, e.g.

$ ([
~

])[ ]φq t1 2 0= (6)

and
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$ ([
~

])[ ] ~ exp ( ) ( )[ ]φ φq XX q

t

t J t t qw t t1 2 1

0

1 11′ − ′ ′ ′∫ i d (7)

for the full identical two spin case in its vanishing wD limit. It is these two
equations which best serve to demonstrate the nature of JXX′ intracluster
coupling. Clearly, JXX′ interaction lies exclusively within the [ $ ]12 (anti-
symmetric) salient and is thus not physically observable, i.e., on account of
the NMR observable (for the most general [X]n (etc.) case) being the
Liouville space ensemble averages:

〈 〉 = 〈 〉− −F T n n1
1

1
1 [~]( )S . (8)

For the specific PSS two-spin system discussed here, this reduces to
〈 〉−T 1

1 2[
~

] . Because $ ([
~

])φ±1
1 21 [t = 0] is not a physically accessible initial polaris-

ation associated with any known, or conceivable, specific pulse-sequence in
to-day’s NMR, this conclusion holds also for the full spin dynamics, Eqs
(5)–(7) above. The generalised (A)[X]n system spin dynamics allows for the
retention of null [~]n , and inaccessible [

~
]1n salients, as specific properties of

the (A)[X]n focussed on here as compared to [AX]n totally bipart uniform
spin systems.

SU n( )2 × S IRREPS: PERTINENCE AND EXTENT OF χ λ
1n
[ ] ABELIAN CHARACTERS

IN (A)[X]n SPIN DYNAMICS

In addition, a brief consideration of the symmetric group irrep structural
hierarchy (where the mathematical symbols {.} and | refer respectively to
‘set’ and ‘for which’; both are invoked here and below. Details of general
hooklength rule for the standard evaluation of χ λ

1n

[ ] permutational group
character(s) can be found in earlier work15 and in the standard S n -algo-
rithm texts cited therein) associated with SU m n( ) × S dual algebras is given
as it is invaluable in defining the following irrep (char) sets:

{[2]; [11]};

{ }[ ];[ ] ;[ ] ( )[ ]3 21 1 23

1

21
33SA χ = S (9)
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[ ];[ ],[ ] ;[ ],[ ] [ ] [ ] [4 31 2 211 12 4

1

31

1

211

1

2
4 4 4SA χ χ = 3; χ={ }2

2 4
] ( )= S (10)

and eventually under S12:

[ ],[ , ][ , ], .. ; {[ ] .,[ ] }; ..[ ]12 111 10 2 621 4422 214 10
SA SA{ ,[ ]112

}only unit charsχ χ[ ] [ ], ( ) .12 1
12

12

S (11)

In the general context of hierarchical structures, this essentially demon-
strates that it is only the [~]n and [

~
]1n irreps of the n-indexed symmetric

group which exhibit (quasi-Abelian) unit characters. This in turn implies
that the only meanful spin dynamics associated with general indexed iden-
tical spin systems likewise occurs in these salients only, with the rotating
frame null space result being general for all totally symmetric [~]n irreps origi-
nating in some corresponding [X]n system, or in a subspectrum of an A[X]n
PSS-based spin system. Two further comments are called for at this point.
The first of these comments concerns the irrep sets associated with higher-
indexed permutation groups and their related SU m n( ) × S dual groups. These
are governed by the independent cardinality of S n group invariants, a prop-
erty that, irrespective of the (original) SU(m) spins involved, is realised in
terms of the SU n( )2 × S duality and its associated time-reversal invariance
(T) properties14,15. The wider significance of this fact has been discussed in
detail elsewhere15.

On account of this earlier extensive treatment of the topic in the context
of the polyhedral-based approach to democratic recoupling15, it is only
briefly mentioned here in the next section, now in the context of
(superboson) quasiparticle mapping over Liouvillian carrier space15b for the
completeness of { (

~
)

~
( )( )}[

~
]D vk U × Γ λ P dual algebra. Our second point concerns

the value of specific applications of the more general tensorial methods for
3-space-based spectroscopies, as reviewed in the monograph by Silver25,
and their contrasts with alternative group theoretical methods. These con-
stitute only one part of such theories, as there exist certain contrasting mu-
tually exclusive roles for tensorial techniques18b and Lie algebraic ap-
proaches26 to the (mathematical) structure of group theory itself (here the
work of Kirillov16 of the Russian school provides an invaluable in-depth ref-
erence guide to Lie algebra and its methods). Some appreciation of the na-
ture of these methods is useful to any in-depth view of the role of group
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theory in quantum mechanics; Tung’s rather concise text24 illustrates the
nature of group structure from a Lie algebraic (or structure factor) point of
view, and provides a useful brief introduction to the role of such methods
in quantum physics. Clearly the two methods complement each other,
with the (dual) tensorial aspects of group theory (largely based on methods
set out in refs17–19) predominantly being utilised here in defining the NMR
PSS of uniform spin ensembles. (The wreath-product, despite in importance
in other area of spectroscopy27, is not pertinent to abstract PSS of NMR; it
occurs then only in specialised applications e.g., quantum rotational tun-
nelling NMR problems.)

‘ALGEBRAIC COMPLETENESS’ IN DUAL MAPS: ROLE OF ‘T’-BASED INVARIANTS
AND S n SUBGROUPS

Further aspects of the theoretical quasiparticle quantum physics from
1970–mid-1980s, as set out in work of Biedenharn and Louck18, are of some
interest here in the context of algebraic completeness of the SU n( )2 × S -de-
fined basis sets, where now the latter are of integer rank as Liouville space
forms. From the form of dual unitary-symmetric group irrep sets for j
half-integer rank here with λ of a bipartite form

{ }D SUj
n( ) ( ) | ( );[ ]U P U P× ∈ ∈Γ λ 2 S (12)

as a Hilbert carrier space-derived property so that the standard Hilbert
quasiparticle boson mapping18 (given below) follows directly. In Hilbert
space, the unitary and S n projection operators act on a simple carrier space
�, so that the dual mapping is simply:

{ }U P U P U P× → × ∈ ∈: � � D SUj
n( ) ( ) | ( ); ;[ ]Γ λ 2 S (13)

clearly this mapping property highlights two concepts: the simple-
reducibility (SR) associated with the SU(2) group, and the completeness of
the dual algebra, or its associated irrep set. In contrast for the equivalent
Liouvillian dual tensors over a superboson (quasiparticle)-based carrier
space15, it is essential to include certain explicit group invariants. These ad-
ditional labels allows the retention of the Liouvillian simple reducibility
(SR) properties for the integer-rank irrep set in the corresponding dual map-
ping
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~

~ ~
(
~

)
~

( )( ) |
~

( ), ;
~

~

[
~

]

U

U U

×

→ × ∈

P

P

:

integer� � D v SU kk Γ λ 2{ }Γ [
~

] ( )( ) ,λ v vnP S∈ invariant

now with [
~

]( )λ S n being of some appropriate quadra-partite form. These [
~

]λ s
are obtained from Hilbert space irreps, via an allowed direct product (DP)
formation (see below). One notes that it is this type of structure which pro-
vides the proper general interrelationship between Hilbert and Liouville
spaces. The presence of the S n invariants as (v) explicit carrier subspace la-
bels ensures that

~ ~
(

( )

� �≡ ∑ v
v

) (15)

where, in the context of Lie algebra, the set of v constitute formal group
measures16, a requisite property for the validity of the DP formation men-
tioned above. One further important concept is associated with these
invariants, namely that they restore the necessary SR to the dual irrep
(sub)sets, since the projective action is now on an appropriate

~
(� v ) carrier

subspace15,28,29. As a corollory to this DP interrelationship of Liouville and
Hilbert space, it follows4 that the respective S n projection operators Pµ, and
for Hilbert space Pµ′ act over the tensorial set, to give

P S
[

~
]

, [
~

]

( ) ( ) ( )
λ λ

λ λ λ λ λ
n

kq kqT v T v≡ ′
′ ′′ = ′ ⊗ ′′

′∑ P P
for of

′ ≡λ λ† { ( :[
~

])}T vkq (16)

where the analogous ~C µ , Cµ (Liouville, Hilbert) class-operators of the group
algebra are defined by standard tensorial forms2,4, via the relationship

Tr Tr~ ( ) ( ) †C µ µ µT v C T v Ckq kq= . (17)

In addition, the n Tr
[

~
] [

~
]λ λ

= P Liouvillian properties based on Eq. (16) follow
directly from the group algebra. Naturally these yield results which are
identical to those derived via the trace P

[
~

]λ
forms and explicit DP formation

(as in Eq. (16)). Tabulations of the Liouville space dual irreps follow directly
from these properties, (i.e.) for two spin –1/2, as in Table 2 of ref.2, and the
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corresponding two spin-one dual tensorial symmetrisation also reported
therein. More extensive tabulations of the dual irreps associated with the
[A]4, [AX]4 uniform spin one-half systems are known to span a range of inter-
related automorphic (embedded) symmetries4,30, with the automorphic
subgroups (therein) for NMR problems defined in terms of the types of hier-
archies associated with the distinct JXX′ intracluster interaction subsets of
the zeroth-Liouvillian, or [ $ ,.]( )H 0

− . The value of the (super) quasiparticle
view of Liouville space-based carrier subspace properties (with the specific
exception of (v) invariants being S n group measures) have been discussed at
some length in earlier work of ours on invariants, SR and SU n( )2 × S
mappings15,28,29 and the determinacy of S Gn ↓ group embeddings30, from
1990s. Group/subgroup chain subductions are invaluable also in realising
the S n invariants of NMR. These chains help to explain why the auto-
morphic PSS symmetries of NMR are related to S n -based democratic
recoupling, and also precise how they differ from 3-space symmetries, typi-
cal of conventional optical spectroscopies and electronic properties.
Clearly, PSS symmetries are governed by the symmetric groups within the
general permutational subgroup subduction scheme

S S Sn n⊃ ⊃ ⊃−1 2... ; (18)

on realising the full set of specific subgroup irreps as routes within the
chain scheme that map onto [2]S2 (after ideas given in the particle symme-
try monograph due to Chen17) one has a convenient form that represent
the (group) scalar invariants. On treating this process as a form of enumera-
tion, one obtains the (independent) cardinality of the corresponding S n

from the number of such routes, so that the three- to five-fold identical [A]n
NMR spin systems, and/or n-indexed S n groups, correspond respectively to
the irrep subgroup chain sets (i.e., ending on [2]S2):

[ ]( ) [ ] ;21 23S ⊃ (19)

[ ] [ ] [ ]; [ ]( ) [ ] [ ]; [ ] [ ] [ ]31 3 2 31 21 2 22 21 24⊃ ⊃ ⊃ ⊃ ⊃ ⊃S (20)

and finally for [A]5(S5), the set of subgroup chain-based irreps:
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[ ] [ ] [ ] [ ]41 4 3 2⊃ ⊃ ⊃

[ ] [ ] [ ] [ ]41 31 3 2⊃ ⊃ ⊃

[ ] [ ] [ ] [ ]41 31 21 2⊃ ⊃ ⊃
(21)

[ ] [ ] [ ] [ ]32 31 3 2⊃ ⊃ ⊃

[ ] [ ] [ ] [ ]32 22 21 2⊃ ⊃ ⊃

[ ] [ ] [ ] [ ]311 31 3 2SA ⊃ ⊃ ⊃ .

Specifically the extent of these S S Sn n⊃ ⊃ ⊃−1 2.. chains of component
subgroup irreps suggest an enumerative method for the corresponding S n

group invariant cardinalities; for the examples given above, one finds that
|SI|(n) ≡ 1:3:6, respectively. For higher indexed originating S n groups, the
number of (independant) group invariants based on p ≤ 4 [λ] subgroup irrep
chains for (all) [λ] prior to/including [λSA](S n ) could well be over-
determined.

General 2n index evaluation of these cardinalities of the S n

invariants15a,15c necessarily draws on some earlier ideas concerned with the
nature of democratic recoupling and also with the related question of ana-
lytic indeterminacy inherent in all systems governed by the multiple
invariants of democratic recoupling18c, exhibiting high levels of degener-
acy. Indeed, a central role for T time-reversal invariance in physics lies in its
defining these |SI|(2n) invariant cardinalities, i.e., via a polyhedral combina-
torial formalisms augmenting15 the earlier linear recoupled, bracket alge-
braic theory, originally due to Weyl14b, discussed at some length else-
where15. By contrast, it is well established that conventional spectroscopies
and electronic angular momentum-based properties, as in (e.g.) the
Lynden-Bells’ presentation31 and Atiyah and Sutcliffe’s discussion32 of the
SO(3) × S n dual group, the role of the symmetric group does not dominate
the treatment, as it does for spin-alone space of NMR dual groups. Such
(non-NMR) systems are associated with various distinctive On orthogonal
group chain subduction processes. This distinction is fundamental to a
proper understanding of the difference of 3-space symmetries from the vari-
ous group theoretic aspects of abstract automorphic PSS based on demo-
cratic recoupling, discussed here. It arises on noting, that while
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SU SO( ) ( )2 3↔ (22)

constitutes a 2:1 homomorphism, no analogous (homo)morphism exists
for any of the multiple SU SU( ) .. ( )2 2⊗ ⊗ structures. Indeed, it is known that

SU SU SO( ) ( ) | ( ) } .2 2 5⊗ → ⊃G G (23)

As a consequence of this fact, the orthogonal group chains and (linear)
graph theory of conventional spectroscopies in general do not apply to the
extensive multiple identical (uniform) spin systems of NMR, or to their
recoupling – a point not widely recognised in some of the earlier work on
NMR spin systems10. This also brings into question the fuller generality of
the earlier conventional |( ( ))|⊗ D n0 U techniques, as utilised (e.g.) by Corio14

to derive the invariant cardinality for modest-indexed multispin systems
under PSS. (Clearly these remarks derive from (e.g.) Wybourne’s 1976
monograph19 which sets out the importance of the GLn subgroup structure,
of which S n group forms a natural part.)

CONCLUDING REMARKS

The theoretic spin dynamical significance of certain established dominant
intra-cluster interaction-based commutator relationships inherent in the
PSS-based (A)[X]2 as being typical of (A)[X]n spin systems (or their A[X]n
subspectra) has been derived from a tensorial analytic treatment of a XX′
model system (cf. to the AX system’s JAX-based φ±1

1 11( . ) polarisation trans-
fers11), and from the inherent limitations of the analogous (non-
degenerate) unit χ λ

1n n
[ ] ( )S characters of the S n algebra, with these being re-

stricted to the totally-symmetric [n], or the totally-antisymmetric [1n]
irreps. The value of the Liouville-space tensorial formalism adopted here is
seen in the clarity of its analytic quantal physics for these specific (A)[X]n
system forms, as distinct from the [AX]n systems, in which the observable
NMR polarisations under PSS are restricted to a (rotating frame-based) null
space, whilst the dominant JXX′:intracl. and cross-product-based algebra(s)
over { ([ ]), ( ), ..}φ φq qn1 11 11 are all confined to the inaccessible antisymmetric
[1n] salient(s). In addition, the CP, CPT NMR residual invariance features
are distinguishable from the $ ( )L 0 -based, spin space PSS symmetry features.
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For the higher n-indexed (A)[X]n systems and their spin dynamics, the un-
derlying roles of S S Sn n⊃ ⊃ ⊃−1 22.. [ ] chains, and their associated demo-
cratic recoupling, characterising these multi-invariant spin systems raises
the question of the existence of a limit to the analytic determinacy of dual
PSS-based spin dynamics. Such concerns are comparable to the modest ana-
lytic determinacy limit (beyond the specialised Jacobian forms of ref.33) re-
cognised by Galbraith34, in the context of orthogonal subgroup chain-based
democratic recoupling associated with conventional (non-NMR) degenerate
spectroscopic systems.

An important role of explicit Liouvillian ancilliary S n invariant labelling,
i.e., now in terms of S S Sn n⊃ ⊃ ⊃−1 22.. [ ]( ) symmetric group (not orthogo-
nal group) chains17, is that of retaining the simple reducibility (SR) proper-
ties of Liouvillian SU(2) × S n dual group algebras, whose { (

~
)

~
( )( )}[

~
]D vk U × Γ λ P

set-completeness (for k integer and [
~

]λ quadra-partite forms) is demon-
strated by nature of

~
U × P (map) actions on

~
� quasiparticle carrier space de-

fined by superboson mapping15b,27. The direct product structure of such
Liouville space-based irreps is seen as a fundamental consequence of the
v n( )S group invariants, which are invaluable in labelling the (augmented)
carrier subspaces-based mappings and retaining SR, being group measures
in a Lie algebraic sense, described by Kirillov16. The conceptual significance
of this has been discussed elsewhere15a,15c. All of these presentations consti-
tute sequels to our earlier reviews30 of the theoretic basis of maximal S Gn ↓
mathematical determinacy for NMR-related automorphic group embed-
dings. A useful criterion exists in the independence of all (bijective)
mappings (i.e., prior to, and including, the λSA self-associate irrep embed-
ding(s)30) for SU(m) n× ↓S G maps. This was shown to be both a necessary
and sufficient criterion. This is clearly a significant augmentation of earlier
theories of group embedding; it lies well beyond the limited known criteria
associated with Cayley’s theorem based on SU(2) × S n properties. From the
nature of these S Gn ↓ group embeddings30, clearly PSS is properly an
automorphic symmetry, as originally defined in the early 1980s by
Balasubramanian1.

The reader will readily recognise also that the dual symmetries of NMR
(derived from identical nature of spins within zeroth-order Liouvillians) are
necessarily symmetric-subgroup chain-based properties2,15,29 (as shown
above), not orthogonal subgroup-based entities as are pertinent to conven-
tional spectroscopies and EPR-studies of crystals. Aside from I, or k rank,
parity features, it should be appreciated that 3-space aspects (apart from in
respect of the established role of parity) has absolutely no role in NMR spin
dynamics. Finally it should be noted here that the original Balasubramanian
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(permutational network) views of the nature of automorphic (spin) symme-
try1 for the PSS of NMR and S S Sn n⊃ ⊃ ⊃−1 2.. leads to the need for correc-
tions to the (orthogonal group-based) notation of (the late) Corio14a, for
group theoretical reasons indicated. The wider importance of tensor mani-
folds in physics may be seen (e.g.) in the text due to Wasserman35. The cor-
relation of (superboson (as a pattern algebra)) mappings and their sign-
based structure to Lie algebra has been given elsewhere15, with the details
of the closed superboson algebras presented in our early 1990s work15b.

As a final pertinent point of experimental NMR interest, it is useful to
stress here that (despite (erroneous) reports in the literature to the contrary)
neither quadrupolar21 or simple dipolar36 R-relaxation terms of Eq. (1) pro-
vide a suitable theoretic mechanism for (spin-alone space) automorphic PSS
symmetry breaking. Any observed departure from the universal dominant
JXX′ non-observation rule in experimental NMR indicates specifically that
the system being studied is not a PSS one (i.e., based on a dominant
intracluster-coupling(s) in $ ( )L 0 ) in the first case, but in reality is an
isochronous spin system20 which exhibits broken spin symmetry under
evolution alone. A further all-too frequent oversight in the NMR literature
concerns the (perceived) role of 3-space effects in PSS. These simply con-
tribute the (maximal) specific rank and hence even/odd parity labelling8,9,22

but of themselves can never induce PSS symmetry into the zeroth-order en-
semble structure, [ $ ,]( )H 0

− . The reader is referred to Abragam’s classic text
and illustrations20, or the work of Jones et al.7, for a fuller discussion of
isochronous spin systems and (more importantly here) a further proof(s)
concerning the non-symmetry breaking role of relaxation – as discussed in
the former for the case of a A[X]2[35Cl]2..-based spin system i.e., as subject
to strongly dissipative quadrular relaxation. The contrasts in the lineshapes
of the distinctive [12], [2] salient spectral features of PSS is an established
characteristic of such PSS problems, which is totally absent from the spectra
of isochronous spin systems. Indeed, the observation of such [1n], [n]-based
contrasts in the lineshape itself demonstrates the above point concerning
the non-symmetry breaking roles of simple forms of $R Q , $R DD -induced relax-
ation i.e., governed by [ ,.]T k2 ′′

− -based even outer-rank R terms.
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APPENDIX

Multipole Expansions and Transformational Properties

The {Tkq(v)} tensorial sets utilised in the main text are related to Sanctuary’s
Ykq(I) (as used in refs9–11) and thence to product basis density operator pre-
sentations, on noting that

T k kkq ( ) ~1 2

~ ( ( )( )) ( ) ( )1 1 2 1 11 2
1

1

2

2

1 2I I k
k

q

k

q

k

q
k k k k q− + −

−







− + − ∑
q q

k q k q

1 2

1 1 2 2

,

Y Y (A.1)

with the compaction (x) = (2x + 1) being adopted here in the initial root ex-
pression. The Y k′q′ multipoles themselves (far RH side above) are related to
product bases by a transformation. They are generated, within a Racah
phase basis, from

Y kq k I M

M M

I k
I

M

k

q

I

M
IM IM= −

− ′






〉 〈 ′−

′
∑i ( )( ) ( ) | |

,

1 (A.2)

where the bracket array simply represents 3j coefficient. The corresponding
reverse transformation is also known, e.g., as given in Eq. (28) of ref.10c.

The question of the inherent symmetry of Tkq(11) tensors under dual
symmetry is readily resolved by deriving their representations in terms of
the simple Hilbert adapted {αα , (αβ + βα)/ 2, ββ}:{(αβ – βα)/ 2} forms, so
that the dual tensors map directly onto {[

~
]:[

~
]}2 12 subspatial salients of

Liouville space. Hence one finds that

T T11 2111 1 2

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 1

11( ) ( ) ; ( )≡
−

−



















≡
−



















( )1 2

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

(A.3)

T T20 2211 1 6

1 0 0 0

0 2 0 0

0 0 1 0

0 0 0 0

11( ) ( ) ; ( )≡

−

−



















≡

−

















( )1 2

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

. (A.4)

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

1192 Temme:



Hence both the T11(11), and the T11([
~

]12 )s associated with JXX′ coupling,
definitely lie in the antisymmetric salient whose forms are in distinct con-
trast to the various [

~
]2 , T2q(11) salient-based tensor components.

Some Comments on Analytic Spin Dynamics for the Contrasting Model B-PSS

Even without introducing a discussion of the consequence of applying limit
conditions, it is clear as a question of logic that $ ( )φ±2

2 11 is actually uncou-
pled from all other polarizations, so that

$ ( )[ ] exp( ) ( )[ ]φ φ± ±= ±2
2

2
211 2 11 0t wti . (A.5)

Hence on introducing the rotating frame, $φ±2
2 represents a constant-of-

motion, whose indirect observation clearly requires that one first generates
some initial $φ±2

2 [0] polarisation, as in the pulse sequences typical of 2D NMR
experiments. For single quantum processes, the general AX spin system
case11 may be associated with distinctly labelled spin 1, spin 2 and a set of
polarisations φq

1 (10), φq
1 (01), φq

1 (11), φq
2 (11) (where the last case is con-

strained to q ≤ 1). The initial portion of Eq. (1) then yields for the rotating-
frame case a typical coupled matrix equation, involving a set of initial con-
ditions (as shown here on the right-hand side)

( / )

$ ( )[ ]
$ ( )[ ]
$ ( )[ ]
$ ( )[ ]

d dt
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t

t

t
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φ
φ
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1
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
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(A.6)

based on wD = (1/2)|w01 – w02| as the off-set about the mean resonance, with
the $. symbol of $φq

k (..)s indicating the adoption of some form of rotating-
frame. Formal solutions in this frame for the AX spin system have been dis-
cussed by Sanctuary11; the general solutions derived by standard methods
are given as Eqs (21)–(32) and Table 5 of the 1985 Sanctuary work cited
above. For brevity here, we just note that the derived λ±i eigenfrequencies
are simply

λ λ± ±= ± = ± ±1 22 2 2 2m J D J D; whereas (A.7)
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where the quantity D has the form ( )4 2 2w JD + . These eigenfrequencies and
their corresponding eigenvectors conveniently allow for the examination of
limiting cases: i.e. of weak coupling, or of strong coupling between identi-
cal spins – as discussed below. On taking the expectation value for the sum
of I– operators as the specific NMR observable with a suitable initial condi-
tion, the spin dynamics for the weak coupled AX case furnishes the final so-
lution

〈 〉 = − + +− ± ±F t t t[ ] ( sin )cos ( sin )cos1 2 1 22 1θ λ θ λ (A.8)

retaining like upper (lower) signs throughout, and where the specific initial
condition used here was

φ φ± ±= =1
1

1
110 0 01 0 2( )[ ] ( )[ ] .i

Finally, the observed spectrum is simply the Fourier transform of the spin
dynamical Eq. (A.8). In consequence, the J interaction in this AX limit (cor-
responding to B-PSS) is an observable property, in direct contrast to spin
dynamical result obtained for the XX′ spin case, involving dominant JXX′
intracluster coupling between the identical spins.
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